Berry-esseen Bounds for Projections of Coordinate Symmetric Random Vectors
نویسنده
چکیده
For a coordinate symmetric random vector (Y1, . . . ,Yn) = Y ∈ R, that is, one satisfying (Y1, . . . ,Yn) =d (e1Y1, . . . , enYn) for all (e1, . . . , en) ∈ {−1,1}, for which P(Yi = 0) = 0 for all i = 1,2, . . . ,n, the following Berry Esseen bound to the cumulative standard normal Φ for the standardized projection Wθ = Yθ/vθ of Y holds: sup x∈R |P(Wθ ≤ x)−Φ(x)| ≤ 2 n ∑ i=1 |θi |E|X i | + 8.4E(V 2 θ − 1) , where Yθ = θ · Y is the projection of Y in direction θ ∈ R with ||θ || = 1, vθ = p Var(Yθ ),X i = |Yi |/vθ and Vθ = ∑n i=1 θ 2 i X 2 i . As such coordinate symmetry arises in the study of projections of vectors chosen uniformly from the surface of convex bodies which have symmetries with respect to the coordinate planes, the main result is applied to a class of coordinate symmetric vectors which includes cone measure C n p on the l p sphere as a special case, resulting in a bound of order ∑n i=1 |θi |.
منابع مشابه
A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator
In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...
متن کاملAn Inductive Proof of the Berry-Esseen Theorem for Character Ratios
Bolthausen used a variation of Stein's method to give an inductive proof of the Berry-Esseen theorem for sums of independent, identically distributed random variables. We modify this technique to prove a Berry-Esseen theorem for character ratios of a random representation of the symmetric group on transpositions. An analogous result is proved for Jack measure on partitions.
متن کاملBerry–Esseen bounds in the entropic central limit theorem
Berry–Esseen-type bounds for total variation and relative entropy distances to the normal law are established for the sums of non-i.i.d. random variables.
متن کاملAn Inductive Proof of the Berry-Esseen Theorem for Character Ratios Running head: Berry-Esseen Theorem for Character Ratios
Ratios Running head: Berry-Esseen Theorem for Character Ratios Submitted 3/9/05; Revised 8/6/06 By Jason Fulman Department of Mathematics, University of Southern California Los Angeles, CA 90089, USA [email protected] Abstract: Bolthausen used a variation of Stein’s method to give an inductive proof of the Berry-Esseen theorem for sums of independent, identically distributed random variables. We m...
متن کاملAn Inductive Proof of the Berry-Esseen Theorem for Character Ratios Running head: Berry-Esseen Theorem for Character Ratios Submitted 3/9/05; Revised 8/6/06
By Jason Fulman Department of Mathematics, University of Southern California Los Angeles, CA 90089, USA [email protected] Abstract: Bolthausen used a variation of Stein’s method to give an inductive proof of the Berry-Esseen theorem for sums of independent, identically distributed random variables. We modify this technique to prove a Berry-Esseen theorem for character ratios of a random representa...
متن کامل